
Resource Selection Using Execution and Queue Wait Time
Predictions

Warren Smith

Parkson Wong

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035

{wwsmith, parkson } @nas.nasa.gov

Abstract

Computational grids provide users with many possible places to execute their applications. We

wish to help users seleci where to run their applications by providing predictions of the execution

times of applications o,t space shared parallel computers and predictions of when scheduling
systems for such para!lel computers will start applications. Our predictions are based on

instance based learning techniques and simulations of scheduling algorithms. We find that our

execution time prediction techniques have an average error of 37 percent of the execution times

for trace data recorded from SGI Origins at NASA Ames Research Center and that this error is

67 percent lower than Jhe error of user estimates. We also find that the error when predicting

how long applications .viii wait in scheduling queues is 95 percent of mean queue wait times
when using our execut, on time predictions and this is 57 percent lower than if we use user
execution time estimates.

1. Introduction

The existence of compu ational grids allows users to easily execute their applications on a variety

of different computer s';stems. The obvious question users have each time they wish to run an

application is which o_mputer system should they use? Many factors go into making this
decision: The computer systems that the user has access to, the user's remaining allocations on

these systems, the cost of using different systems, the location of data sets for the experiment,

how long the application will execute on different computers, when the application will start

executing, and so on. In this work, we address the problems of predicting how long an application

will execute on different computer systems and predicting when scheduling systems for such

computers will start an application. With this information, we can calculate when an application

will complete executing and we can use these predictions to suggest which computer system to

use for an application.

The exact problems we address are predicting how long parallel applications will execute on

space shared parallel computers and predicting how long these applications will wait in
scheduling queues before they are given access to resources. We predict the execution time of

applications using an hit+torical database and instance-based learning techniques. Each data point
in the database is one application execution, or job, that has run in the past. When an execution

time estimate needs to be calculated, instance-based learning techniques find historical jobs that

are similar to the job bei lg estimated, and derive a prediction from those historical jobs.

We find that our execution time prediction technique has an average error of 37 percent of the

average execution times of six months of jobs submitted to three SGI Origins located at the NAS

division at the NASA Ames Research Center. We also compared the performance of our

prediction technique to three other techniques that have been developed. We find that our

techniquecurrentlyha,.a 7 percentlowererrorthanthebestof thesethreetechniquesforjobs
executedonfoursupercomputersatthreedifferentcenters.

Ourapproachto predictingwhenajob will executeon a parallelcomputeris to predictthe
executiontimesof all cf thejobsrunningandwaitingtorunandthensimulatehowthescheduler
foraparallelcomputerwill schedulethewaitingjobs.Thissimulationgivesusanestimatedstart
timeforeachjobthati:_waitingtoexecute.If wepredictthestarttimeofeveryjobinoneof our
NASAAmestracesasit issubmitted,wefindthattheaverageerrorof thisapproachis95percent
of theaverageschedulngqueuewaittimewhenusingFirst-ComeFirst-Servedschedulingbut
thisis57percentbetterthanif weuseuserexecutiontimeestimatesinsteadof ourexecutiontime
predictions.

2. Execution Time Prediction

We predict the executi, m time of applications using instance based learning techniques that are

also called locally weighted learning techniques [2, 10]. In this type of technique, a database of

experiences, called an experience base, is maintained and used to make predictions. Each

experience consists of input and output features. Input features describe the conditions under

which an experience was observed and the output features describe what happened under those

conditions. Each featur: typically consists of a name and a value where the value is of a simple

type such as integer, floating point number, or string. When a prediction is to be performed a

query point consisting of input features is presented to the experience base. The data points in the
experience base are examined to determine how relevant they are to the query. Relevance is

determined using the distance between an experience and the query.

There are a variety of distance functions that can be used [1 3] and we have chosen to use the

Heterogeneous Euclidean Overlap Metric. This distance function can be used on features that are

linear (numbers) or norainal (strings). We require support for nominal values because important

features such as the names of executables, users, and queues are nominal. The distance between

experience x and experi race y is defined as:

D(x,Y)=_dy(x,Y) 2

W"nere f is a certain feature and dl (x, y) is the per-feature distance. This is very similar to the

Euclidean distance, except that to support nominal values, the following per-feature distance is
used:

l, if xs or)'I is unknown, elseds (y, y)= overIapy (x, y), if f is nominal, else

[rn_ d/ffs (x,y)

With the following definilions:

_O, if = y f xs - Ys
overlap i (x, y) = [l , otherwiseXi rn _ diff I = maxs- min s

The per-feature distance between two nominal values is 0 if they are the same and 1 otherwise.

For linear values, the di _tance is their difference scaled by the range of values for feature f in the

experience base. This _,pproximately scales the distance to be between 0 and 1. As a further

refinement, we perfom, feature scaling to stretch the experience space and have it be more

importantthatcertainfeaturesaresimilarthanothers.To accomplishthis, weaddfeature
weights,wf, to our dis:ance function:

Once we know the di, tance between experiences and a query point, the next question to be
addressed is how we calculate estimates for the output features of the query point. For linear

output features, such as execution time, our approach is to use a distance-weighted average of the

output features of the experiences to form an estimate. We use kernel regression to form estimates

and following kernel function to form the estimate E for output feature for a query point q:

ZK(D(q,e))Vj(e)

Ef(q)= e

Z K(D(q,e))
e

where K is the kernel fe nction, D is the distance function described previously, e is an experience

in the experience base, and Vr (e) is the value for feature fof experience e. The kernel function is

used to weight the values of the features in the experience base based on distance. The kernel
function should approach a constant value as the distance goes to 0 and should approach 0 as the

distance goes to infinity. This results in experiences closer to the query point having a larger
contribution to what the estimate will be. There are a wide variety of kernel functions that can be

used. We have chosen to use a simple Gaussian function. Further, we have included a kernel

weight so that we can compact or stretch the kernel to give lower or higher weights to

experiences that are farther away. The resulting kernel function is:

K(d)=e-(12
In the previous discussi,m, we have described the kernel width and feature weight parameters that
need to be selected. Two other parameters we need values for are the maximum experience base

size and the number ,ff nearest neighbors (experiences) to use when making an estimate.

Specifying the number of nearest neighbors to use allows us to decrease the amount of time it
takes to calculate an estimate, but we do not want this to adversely impact estimation

performance. Our appr, mch to determine the best values for these parameters is to perform a

genetic algorithm search [7] to try different values and attempt to minimize the prediction error.

In our approach, a scheduling job can be an experience or a query. When a job finishes executing,

it becomes an experience that is inserted into the experience base. This experience consists of
input features such as the user who submitted the job, the application that was executed, the

number of CPUs requested, and so on. The execution time of the job is the only output feature of

the experience. When a user wants a prediction for how long a job will execute, the job is turned

into a query that contains the input features just described. An estimate for the execution time

output feature of the query is made using the techniques we have described above.

2.1. Performance

We evaluate the performance of our execution time prediction technique using trace data

recorded from three SGI Origins located at the NASA Ames Research Center. The traces were
recorded during 2001 fiom the system lomax, that had 496 CPUs available to users, steger that

had 248 CPUs available, and hopper that had 60 CPUs available. For each job, the relevant

informationin thetrac:sis theuserwhosubmittedthejob, thenameof thejob,thenumberof
CPUsrequested,thear_ountof wallclocktimetheCPUswererequestedfor,theamountof wall
clocktimeactuallyuse,l, andwhenthejob wassubmitted.
Tofindthebestparametersfortheinstancebasedlearningtechniques,wesearchovertracesfrom
MayandJuneof 20(q. In all cases,we initializedourexperiencebasewith thejobs that
completedin May.Forstegerandhopper,wepredictallof thejobsthatweresubmittedinJune
andinsertedall of thejobsthatfinishedin June.Weusetheaccuracyof thesepredictionsto
evaluatetheparametersselected.LomaxhadalargenumberofjobssubmittedinJunesoweonly
usedthefirstweekof datafromJuneandevaluatedtheparametersusingtheaccuracyof the
predictionsin thisweekof data.Thebestparameterswefoundareshownin Table1.Thetwo
obvioustrendsarethatthenumberofnearestneighborsisrelativelysmallandthefeatureweight
forthenumberofCPU_isrelativelyhigh.

Table1.Thebestinstancebasedlearningparametersfoundbyourgenetic
Parameter

Nearest neighbors

__ Experience base size
Kernel width

Job name weight

User name weight

lmber of CPUs weight

_ equested time weight

Current time weight

Workload

Lomax Steger
25 8

1200 1161

12.0 36.5

65.7 83.1

4.9 57.4

67.0 77.7

66.0 17.6

54.0 74.1

algorithm searches.

Hopper
7

8486

18.0

31.4

99.2

79.6

101.7

39.9

After we find the parar_eters to use for the instance based learning techniques, we evaluate the

accuracy of these configurations using trace data from July through December of 2001. We use

this approach to accurately reflect how searches would be performed and used in reality. Table 2
shows the accuracy of cur predictions along with the accuracy of user estimates and the mean run

times of the applications in the workloads. The table shows the mean e_or of our predictions is

between 36 and 39 percent of the mean run time while the error of the user estimates is between
87 and 149 percent of the mean run time. One fact to note about the user estimates are that users

are encouraged to over estimate their execution time because their applications are terminated if
they use more time than they estimate.

Table 2. Execution time prediction error on traces recorded during the last 6 months of 2001.

System Mean 'or Mean Error of User Estimate Mean Run Time

(minutes) (minutes) (minutes)
lomax 36.27 86.00 98.80

steger 22.45 61.31 63.04
hopper I 22.16 84.56 56.91

2.2. Previous Work

There have been several efforts to attempt to predict the execution time of serial and parallel

applications. There have been many efforts to predict the execution time of serial applications on

loadedcomputersystems[3,4,8,14].Kapadiausedinstancebasedlearningtechniques,thesame
classof techniquesweuse,to alsopredictserialapplicationson loadedcomputersystems[9].
Anothereffortestimatedtheperformanceofcomponentsof distributedapplications[11]. Several
researchers,includingoneof theauthors,haveaddressedtheproblemof predictingtheexecution
timeof parallelapplicationson spacesharedparallelcomputersby categorizingcompleted
applicationsandcalcuialinga predictionfromthecompletedapplicationsin thecategorythe
applicationtopredictfallsin [5,6,12].
In [12]it wasshownthatthepredictiontechniquedevelopedbySmithhaslowerpredictionerror
thantheapproachesof DowneyandGibbons.Table3showsacomparisonof Smith'stechnique
andourtechniqueusingtracedatafrom3 monthsof datafromIBM SPthatwasat Argonne
NationalLaboratorydtring 1996,12monthsof datafromtheIBMSPthatwasattheCornell
TheoryCenterin1996,andtwo12monthtracesfromtheIntelParagonthatwasattheSanDiego
SupercomputingCentrein 1995and1996.Thetableshowsthatatthecurrenttime,ourinstance
basedlearningtechniquehas7percentlowerpredictionerrorthantheapproachofSmith.

Table3.Acomparisonof ourexecutiontimepredictiontechniquetothoseofSmith.
Workload Our can Mean Error for Mean Error of User Mean Run

Error (] nutes) Smith (minutes) Estimate (minutes) Time (minutes)
ANL 41.52 38.48 104.35 97.08

CTC 05.71 106.73 222.71 182.49

SDSC95 50.81 59.65 N/A 108.16

SDSC96 59.24 74.56 N/A 166.85

3. Start Time Prediction

Our approach to predicting when applications submitted to scheduling systems will begin

executing is relatively simple: we perform a simulation of the scheduling algorithm which results

in estimated start time_ for each of the applications waiting in the queue. This simulation is

performed using prediclions of the run times of the applications because the actual run times are
not known.

We evaluate the pcrforraance of this technique using six months of trace data from July through

December of 2001 recorded from the SGI Origins lomax, steger, and hopper. When using our
prediction techniques, we first load the execution experiences from June of 2001 into the

experience base and then simulate the following six months of data. We use the execution time

prediction configuratior that we found using our searches of Section 2.1. So far, we have only

had time to evaluate this approach using the First-Come First-Served scheduling algorithm and

the trace data from hopper. We will evaluate other scheduling algorithms, such as backfill, using

trace data from lomax, steger, and hopper for the final version of this paper.

Table 4 shows the prediction error of our technique when our run time predictions are used and
when the user estimate_, are used. We do not show that when the exact execution times of the

applications are known, we can exactly predict how long each application will wait in the queue.

The data shows that if we use the estimates of run times made by users, the error is 222 percent of

the mean wait time. If our run time estimates are used, the error is only 95 percent of the mean

wait time. This is an irrprovement of 57 percent. We expect to reduce our start time prediction

error for the final versien of this paper by optimizing our instance based learning parameters for

the execution time predi,=tions made here instead of the ones made in Section 2.1.

Table4.Starttimepredictionerrorfor tracedatafromthelastsixmonthsof datain 2001and
First-ComeFirst-Serve,l scheduling.

Workload
Hopper

Mean Error using User Mean Error using Mean Wait
un Time Estimate Predicted Run Time Time

(minutes) (minutes) (minutes)
124.48 53.09 56.03

4. Implementation

We have implemented a prototype service to provide predictions using our techniques. This

service can be used to provide execution time predictions, start time predictions, completion time

predictions (start time _rediction plus the execution time prediction), and suggestions of which
machine to use. The suggested machine is the one that will complete an application earliest. We

have deployed this prot,)type service for use in the SGI Origin cluster at Ames that consists of the

machines lomax, steger, and hopper. These systems are all scheduled using PBS[1] and the

architecture of this serv ce is shown in Figure 1.

The prediction service is executing on a system at Ames and can be accessed from client

command line program.,_ on remote computer systems. The command line programs allow users to

ask for the predictions and suggestions described above. These programs can be run on jobs
already submitted to the PBS schedulers or on PBS scripts that are about to be submitted. To

accomplish this, the system has been programmed to be able to parse PBS scripts to pull out job

information, to monitor the jobs that exist in PBS scheduling systems, and to simulate the

scheduling algorithms used on our Origins. We have just begun to evaluate this implementation

and do not have performance data to present at this time.

client :

ill t CommandprogramsLine1t Prediction_interfaceClient

i Prediction

Service

Interface

Start and Completion Time Predictor ' ']

PBS Scheduling Simulator

Execution Time Predictor

Experience Base

PBS Monitor

PBS Monitor [
F

. o

Figt re t. Architecture of our prototype prediction service.

5. Conclusions and Future Work

This paper presents a technique to predict the execution times of parallel applications when run

on space shared parallel computers and a technique to predict how long such applications will

wait in scheduling queuJes before they are allocated resources. These predictions allow us to

predict the completion time of applications that is a very useful piece of information for users that
are trying to select a computer system in a computational grid.

We find that our execution time prediction technique has an average error of 37 percent of the

average execution time_b on trace data recorded from three Origins at NASA Ames Research

Center. We also find that the average start time prediction error 95 percent of the average queue

6

waittimewhenusingFirst-ComeFirst-Servedschedulingbutthisis57percentbetterthanif we
useuserexecutiontimeestimatesinsteadofourexecutiontimepredictions.

Forthefinal versionof thispaper,wewill performmoreextensivesearchesto improveour
executiontimepredictionaccuracyandperformmoreanalysisof ourdata.In thefuturewewill
alsocontinuetoimprovetheperformanceof ourinstancebasedlearningtechniques.In addition
to investigatingmoreadvancedinstancebasedlearningtechniques,we will examineother
improvementssuchasallowingusersto specifyapplication-specificfeatures.We will also
modifythedesignof tie predictionservicepresentedinSection4 sothatit will operateinafull
computationalgrid,notjustatasinglesite.

References

[1]
[2]

[3]

[4]

[51

[61

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

"The Portable Batch System," http://www.pbspro.com.
C. Atkeson, A. Moore, and S. Schaal, "Locally Weighted Learning," Artificial

Intelligence Re,,iew, vol. 11, pp. 11-73, 1997.

M. Devarakor, da and R. Iyer, "Predictability of Process Resource Usage: A

Measurement-Based Study on UNIX," IEEE Transactions on Software Engineering, vol.

15, pp. 1579-1586, 1989.

P. Dinda, "Onl:ne Prediction of the Running Time of Tasks." In Proceedings of the The

10th IEEE International Symposium on High Performance Distributed Computing, 2001.

A. Downey, 'Predicting Queue Times on Space-Sharing Parallel Computers." In
Proceedings of the 11 th International Parallel Processing Symposium, 1997.

R. Gibbons, "A Historical Application Profiler tor Use by Parallel Schedulers," Lecture

Notes on Computer Science, vol. 1297, pp. 58-75, 1997.

D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning:

Addison-Wesley, 1989.

M. Iverson, F. Ozguner, and L. Potter, "Statistical Prediction of Task Execution Times
Through Analy!ical Benchmarking for Scheduling in a Heterogeneous Environment." In

Proceedings of the IPPS/SPDP'99 Heterogeneous Computing Workshop, 1999.

N. Kapadia, J. Fortes, and C. Brodley, "Predictive Application Performance Modeling in

a Computational Grid Environment." In Proceedings of the 8th IEEE International

Symposium on High Performance Distributed Computing, 1999.
J. Schneider and A. Moore, "A Locally Weighted Learning Tutorial using Vizier 1.0,"

Robitics Institul e, Carnegie Mellon University CMU-RI-TR-00-18, Febuary 2000.

J. Schopf and F. Berman, "Performance Prediction in Production Environments." In

Proceedings of the 12th International Parallel Processing Symposium and the 9th
Symposium on Parallel and Distributed Processing, 1998.

W. Smith, I. Foster, and V. Taylor, "Predicting Application Run Times Using Historical

Information," L,rcture Notes on Computer Science, vol. 1459, pp. 122-142, 1998.

D. R. Wilson and T. R. Martinez, "Improved Heterogeneous Distance Functions,"

Journal of Artif, cial hztelligence Research, vol. 6, pp. 1-34, 1997.

R. Wolski, N. :_,pring, and J. Hayes, "Predicting the CPU Availability of Time-Shared

Unix Systems.' In Proceedings of the 8th IEEE International Symposium on High

Performance Distributed Computing, 1999.

